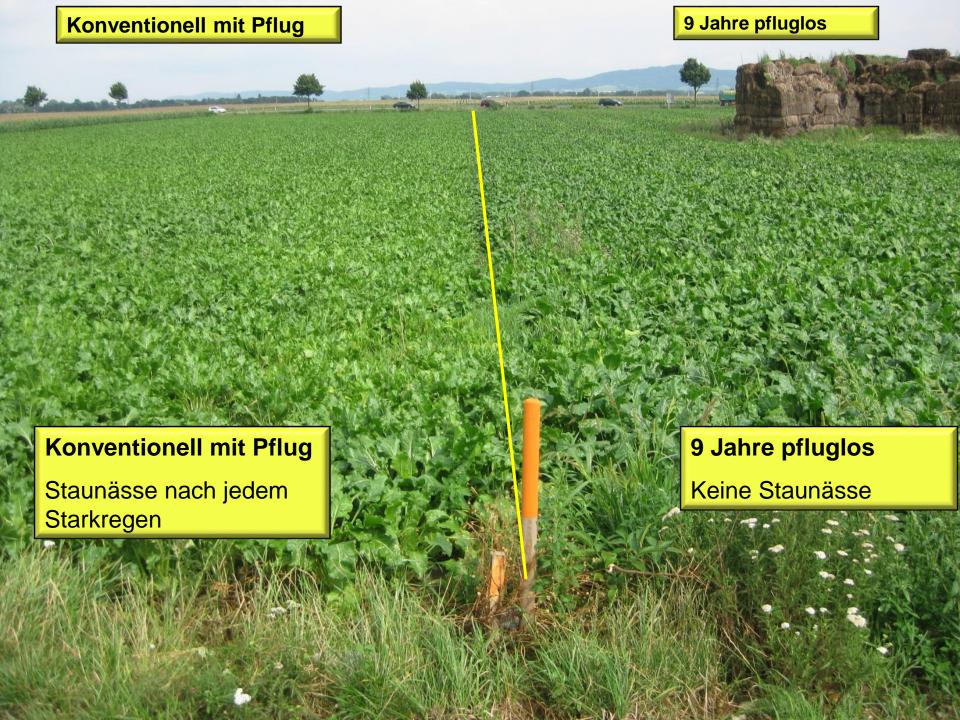
Versuche zu Minimalbodenbeartbeitung und Eosionsschutz

Rosner J.:, Amt der NÖ Landesregierung, Abt. Landwirtschaftliche Bildung, Frauentorgasse 72,

A- 3430 Tulln, josef.rosner@noel.gv.at

Tullnerfeld – Gollarn 2009



Qualifizierte Gründecke – Anbau unmittelbar nach der **Ernte mit oder ohne**

Pro ha im Boden:

25 t Flora

5 t Fauna

Entspricht

6 GVE

Internationale Tendenzen in der Bodenbearbeitung

- 1961..... 0.4 ha NoTill Kentucky Mr. Jung
- ■1989...... 10 Mio ha No Till
- ■2001..... 65 Mio. ha No Till
- ■2002...... 68 Mio. ha No Till
- ■2004...... 72 Mio. ha No Till
- ■2006...... 90 Mio. ha No Till
- ■2013...... 120 Mio. ha No Till

Länder:

USA (25 Mio. ha), Canada (12 Mio. ha), Brasil, Argentina – Latin America > 60 Mio. ha, Australia (> 10 Mio. ha)

Mehr als 98 % von der NoTill – Fläche in diesen Ländern

Konventionell

- Boden ganzflächig gepflügt
- Scholle 20 bis 30cm tief aufgebrochen und gewendet
- Pflanzenreste in den Boden eingearbeitet

Vorteile

- Weniger Unkraut und Schädlinge
- Pflanzenschutz weniger kompliziert
- + Keine Extrainvestition -

Nachteile

- Schlechter Erosionsschutz
- Schlechterer Wasser- und Mineralaustausch
- Höherer Arbeits- und Energieaufwand

Pflanzenreste Pflanzenreste Vo Regenwurmgänge • kein Pflügen, kein Eggen, nur schmale Schlitze • Saat wird punktuell eingebracht

Pflanzenreste bleiben auf dem Boden

No Tillage = NoTill

Vorteile

- + Guter Erosionsschutz
- + Geringere Verdunstung
- Wasser- und Mineralaustausch mit tiefen Bodenschichten vor allem durch Regenwurmgänge
- + Zeit- und Energieersparnis

Nachteile

- Mehr Unkraut und Schädlinge
- Unter Umständen mehr Pestizide nötig

Welt online 24.01.011

Viele Landtechnische Entwicklungen der letzten Jahrzehnte verursachen erst Probleme

Gründe für No Till

- ✓ Senkung der Produktionskosten
- ✓ Geringere Befahrhäufigkeit → weniger Bodenverdichtung
- ✓Weniger Arbeitszeit pro ha mehr
 - Schlagkraft → Bewirtschaftung von mehr
 - Fläche möglich
- **√** Geringere Maschinenbeanspruchung
- ✓ Verhinderung von Wind Wasser Tillage
 - **Erosion**
- ✓ Erhöhung des Humusgehaltes →
- √Verbessertes Wasserspeichervermögen
- ✓ Signifikant höhere Aggregatstabilität → bessere Tragfähigkeit und Befahrbarkeit der Felder
- **✓** Langfristig bessere Erträge
- ✓ Geringere CO₂ Freisetzung in die Atmosphäre
 - ⇒ niedrigerer Treibstoffverbrauch als Ursache

geringerer Greenhouseeffekt – Beitrag zu Klimaabkommen

Die Wirtschaftlichkeit des Systems ist entscheidend!

(Rolf Derpsch)

Matermac mit Meißelschare

Kuhn Maxima umgebaut von Schneidscheiben auf Coulterscheiben ⇒ die lockere Erde benötigt man nach der Saatrille zum Schließen dieser

Monosem NX

Horsch Maestro

Maisdirektsaat mit Väderstad Tempo mit Coulterscheiben – Vorsatz NoTill - Betrieb Zaussinger 1. Mai 2012

Gründeckenanbau in Wintergerstenstoppeln Hollabrunn 12. Juli 2012

Silomais in abgespritzten Winterroggen Humpolec CZ Juni 2012

Silomais in abgespritzten
Winterroggen Humpolec CZ
September 2012

Direktsaat Winterroggen in Senf - Phaceliagründecke

Sorte
Minello 90 %

+
Dukato 10 %

300 K/m²

Versuchsvarianten

- •Direktsaat 03.10.2011
- •Direktsaat nach Round up 26.09.2011
- •Messerwalze Direktsaat 28.09.2011
- •Messerwalze nach Round up Direktsaat
- Mulchhäcksler Direktsaat
- •Mulchhäcksler nach Round up Direktsaat
- •Mulchhäcksler Scheibenegge Mulchsaat

Anbau Winterweizen in Leguminosen Gründecke Tulln 12. Oktober 2012

Wissenschaftliche Ergebnisse

Klik et al.

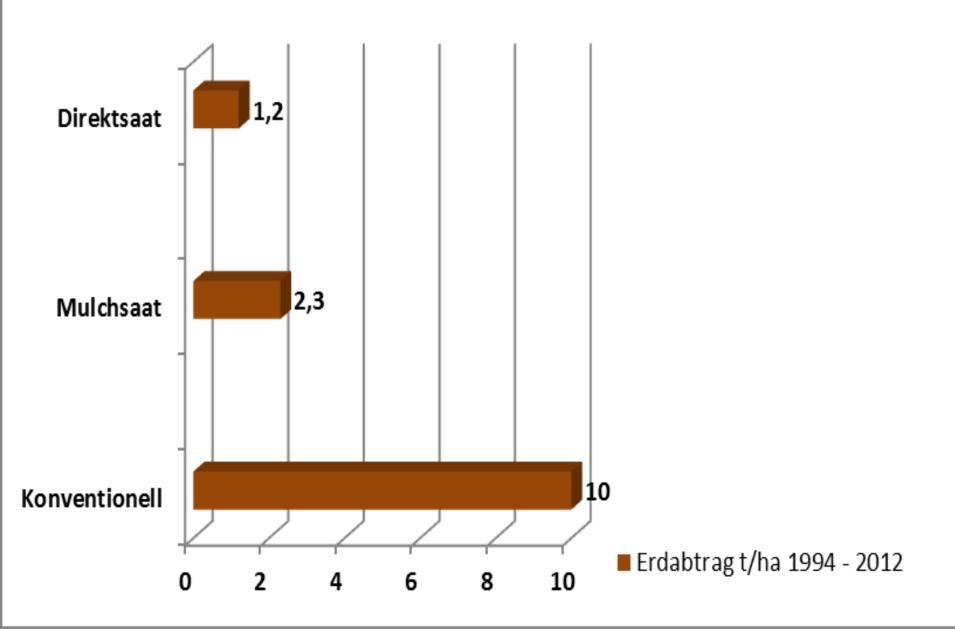
Universität für Bodenkultur

Institut für Hydraulik und Landeskulturelle Wasserwirtschaft

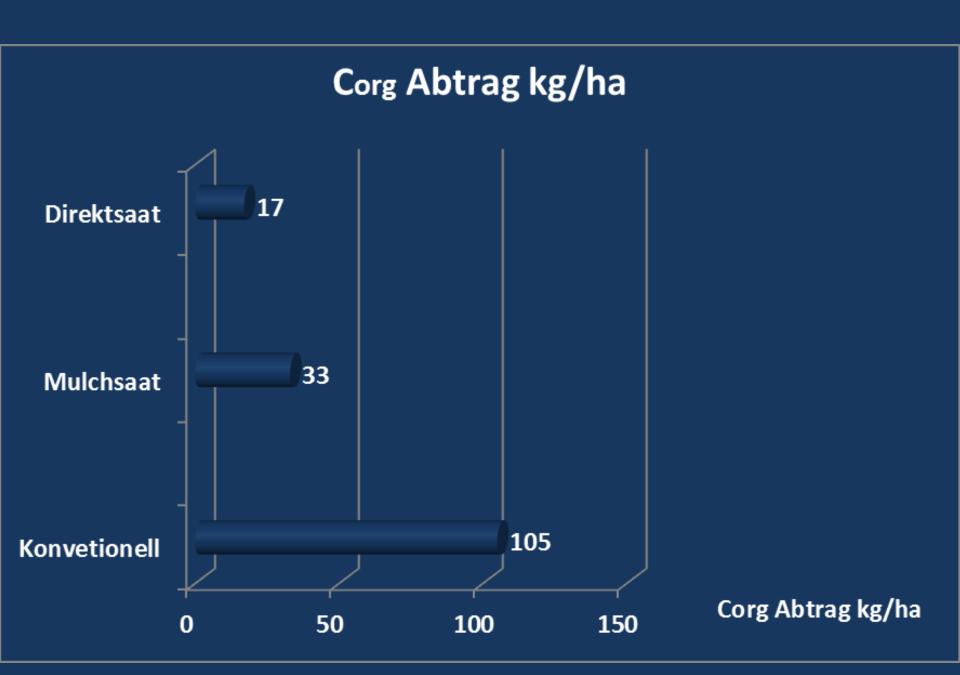
und

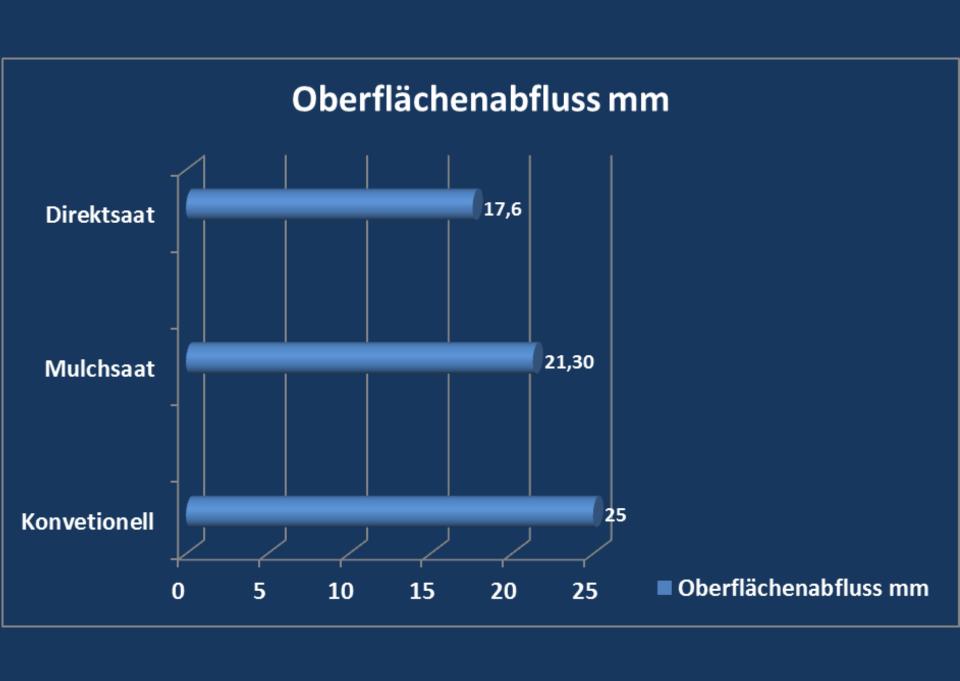
Lehr- und Versuchsbetriebe Land NÖ

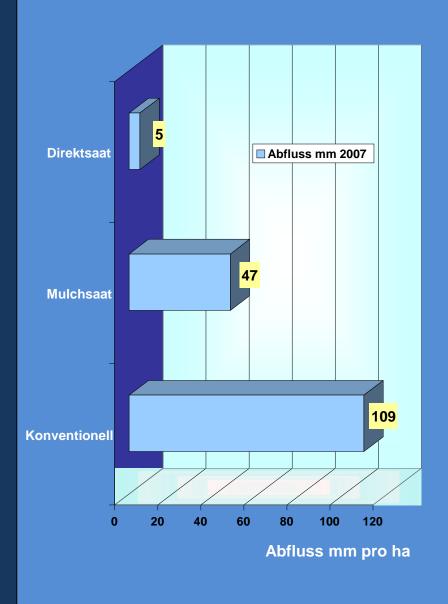
Erosions – Versuchsstellen NÖ

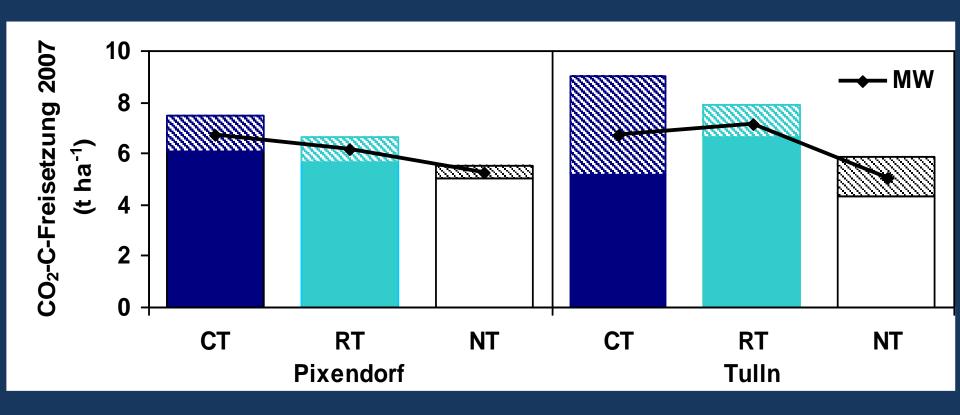


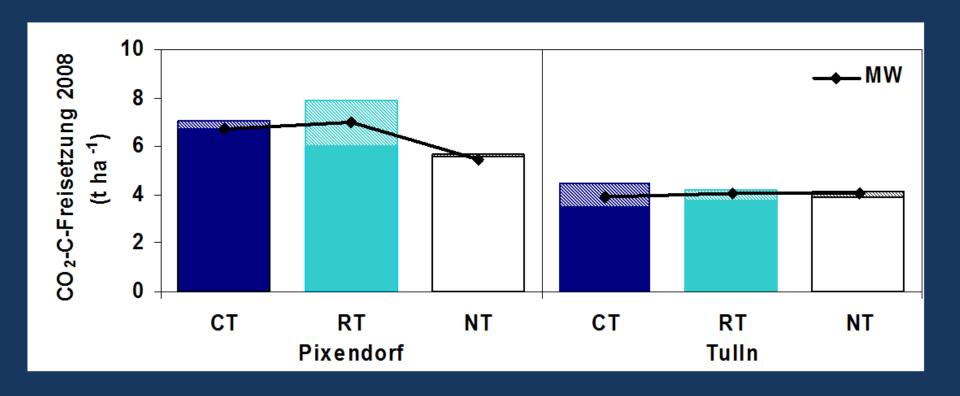
	i ulin	Pixendorf		Miste	Misterbach		nra	Kirchberg
	ВВ	ВВ	E	ВВ	Е	ВВ	E	
Bundesland	NÖ	١	IÖ	N	Ö	N	Ö	Steiermark
Jahresniederschlag (mm)	685	685		645		945		730
Mittlere Jahres- temperatur (°C)	9,4	9	9,4		9,6		9,4	
Bodenart	lehmiger Ton	sandiger Schluff		lehmiger Schluff		sandiger Lehm		lehmiger Sand
Hangneigung (%)	0 – 2	5 - 6		0 - 2	12 - 13	14	- 16	12 - 15
Untersuchte Varianten	CT, RT, NT, MB	CT, RT, NT, MB	CT, RT, NT	CT, RT, NT	CT, RT, NT	CT, RT, NT	CT, RT, NT	CT, RT, NT
Anzahl der Wh	3	3		2	3	;	3	3
Versuchsbeginn	2003	1998	1997	2006	1994	2006	1994	2007


Kirchhera


Erdabtrag t/ha 1994 - 2012


Organischer Kohlenstoff - Verlust Corg kg/ha/Jahr

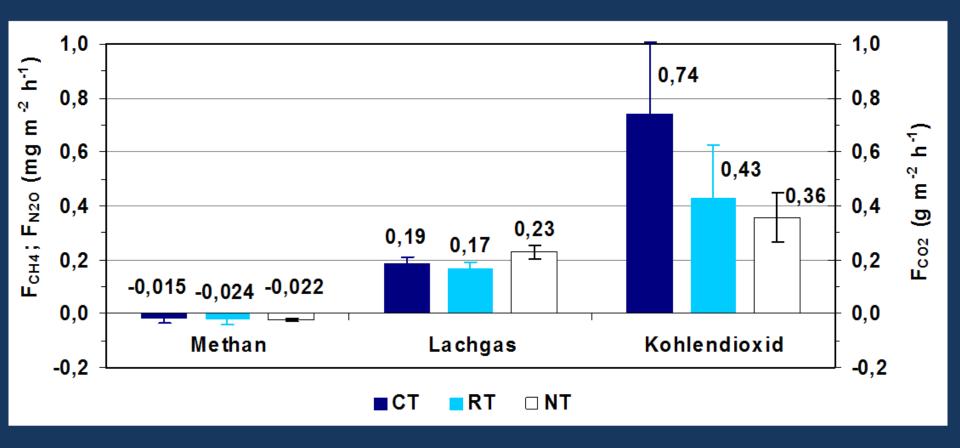
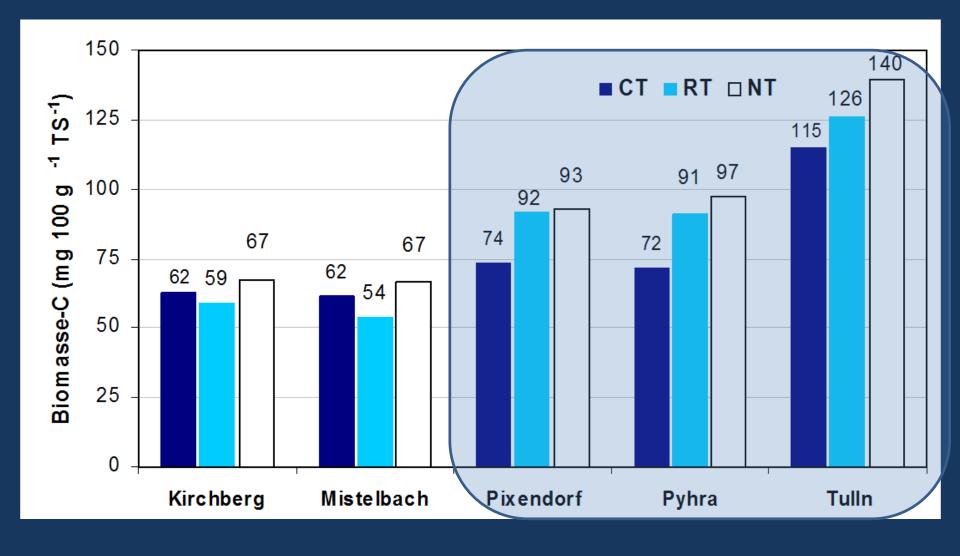


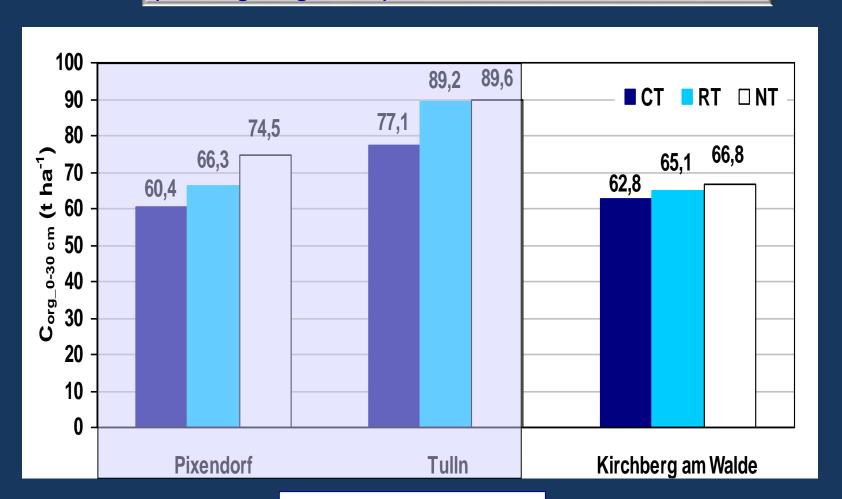


Abfluss mm Tulln - Pixendorf 2007 Kultur Körnermais

CO₂-C-Freisetzung Messperiode April bis November 2007. Dargestellt sind Minimum, Mittelwert und Maximum aus jeweils drei Feldwiederholungen für die Standorte Pixendorf und Tulln (Klik et al.)

CO₂-C-Freisetzung Messperiode Februar bis Juli 2008. Dargestellt sind Minimum, Mittelwert und Maximum aus jeweils drei Feldwiederholungen für die Standorte Pixendorf und Tulln (Klik et al.)


Abbildung 32: Methan-, Lachgas- und Kohlendioxidflüsse mit geschlossen-statischen Kammern am 9. Juni 2008 in Pixendorf (Mittelwerte aus drei Feldwiederholungen) (Klik et al.)

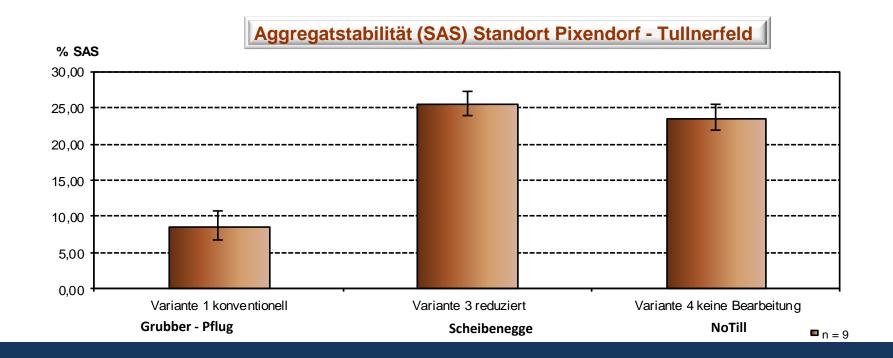
Mikrobielle Biomasse (in mg Biomasse-C 100 g-1 TS-1) für die untersuchten Standorte und Varianten (Klik et al.)

Organischer Kohlenstoff im Boden

→ Umrechnung von Massenprozent auf Tonne pro Hektar (über Lagerungsdichte) für die Tiefenstufe 0-30 cm

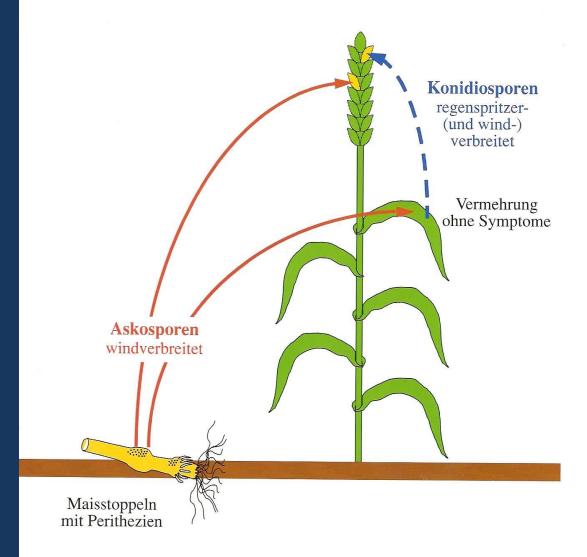
 \rightarrow CT << RT < NT

(Trümper G. u. A.Klik)



Grünerbsenernte
Obersiebenbrunn, 12. Juni 2013
Fotos: Martin Grimling, Obersiebenbrunn

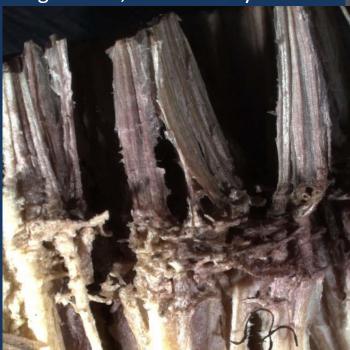
Es zeigt sich deutlich der Zusammenhang zwischen Aggregatstabilität und Bodenbearbeitungssystemen. Durch konventionelle Bodenbearbeitung verlieren die Bodenaggregate mehr als 50 % ihrer Stabilität. (Klik et al. 2008)



Leergewicht: 26 t

Bunkerinhalt: 30 t

Ausbreitung von Fusarium graminearum



sichtbarer Befall an *Fusarium* Stengelbefall, rötliches Mycel

Verreet 2011

Maiszünsler überwintert oberflächlich im Maisstroh - feines HÄCKSELN zur Bekämpfung

Auswertung Bode	enbearbeit ung svers u	che Niederösterreich

	2003, Amstetten		2006, Px, VF SB 2008, GH, VF KM		, VF KM	2008, Px, VF KM		2008, Tu, VF Raps		
	WW		WW				WW		WW	
	Xenos		Capo		WW Chevalier		Саро		Estevan	
	DON	rel,	DON	rel,	DON	rel,	DON	rel,	DON	rel,
Konventionell	218	100	250	100	1116	100	144	100	252	100
Minimiert	813	373	570	228	1086	97	113	78	106	42
Minimal	566	260	140	56	1280	115	137	95	126	50
NoTill	k.A.		370	148	1039	93	205	142	219	87
Ø	532,33		332,5		1130,3		149,75		175,75	

			Hollabrunn, VF Mistelbach, VF 2009 Amstetten, 2009 Pyhr		hra, 2011 Amstetten, VF KM		Durchschnitt				
	Estevan		Estevan		Kerubino		Chevalier		Kerubino		Relativ
	DON	rel,	DON	rel,	DON	rel,	DON	rel,	DON	rel,	
Konventionell	293	100	67	100	442	100	747	100	374	100	100
Minimiert	223	76	72	107	1072	243	1350	181	498	133	156
Minimal	237	81	50	75	617	140	k.A.		649	174	116
NoTill	134	46	113	169	903	204	k.A.		306	82	121
Ø	221,75		75,5		758,5		1048,5		456,75		

Winterweizen in Bodenbearbeitungsversuchen ohne und mit Fungizideinsatz

	2010, Tulln-Pixendorf, Vorfrucht Körnermais, Sorte Capo							
	ohne i	Fungizid	mit Fu	W° %				
	DON	rel,	DON	rel,				
Konventionell	110	100	50	100				
Minimiert	392	356	50	100	87			
Minimal	255	232	50	100	80			
NoTill	843	766	140	280	83			
Ø	400		72,5		82			

W° % Wirkungsgrad – Reduzierung DON - Gehalt

Fungizidversuch in Tulln mit 2 Fungizidvarianten Alle Varianten wurden am 20.6.2006 (BBCH 65) beregnet Fungizidvariante A: Behandlung am 21.6.06 (BBCH 69) mit 1,5 l/ha Pronto Puls Fungizidvariante B: Behandlung am 8.6.06 (BBCH 49) mit 11/ha Swing Gold Behandlung am 21.6.06 (BBCH 69) mit 1, 5 I/ha Caramba

Reduzierung

rel.

60

78,3

77,8

37,5

64,8

63,7

Rosadur, behandelt B

rel,

100

260

333

667

153

DON

150

390

500

1000

230

454

Reduzierung Bodenb. Rel.

100

189

267

393

108

rel.

75

67,5

72,2

16,7

57,4

57,8

Sommerdurum mit Fungizid (2 Versuche) - beregnet

nicht weiter au	OON- und NIV-Gehausgewertet werden, quantitativ nachgev	da dieses i	nur in 3 Varianten v	_	
2006, Tu, VF KM	2006, Tu, VF KM	W° Mykotoxin-	2006, Tu, VF KM	W° Mykotoxin	Durchschnitt

rel,

100

108

167

313

79

Rosadur, behandelt A

DON

240

260

400

750

190

368

Rosadur, unbehandelt

Konventionell |

Konventionell

Minimiert

Minimal

NoTill

Ø

DON

600

1200

1800

1200

540

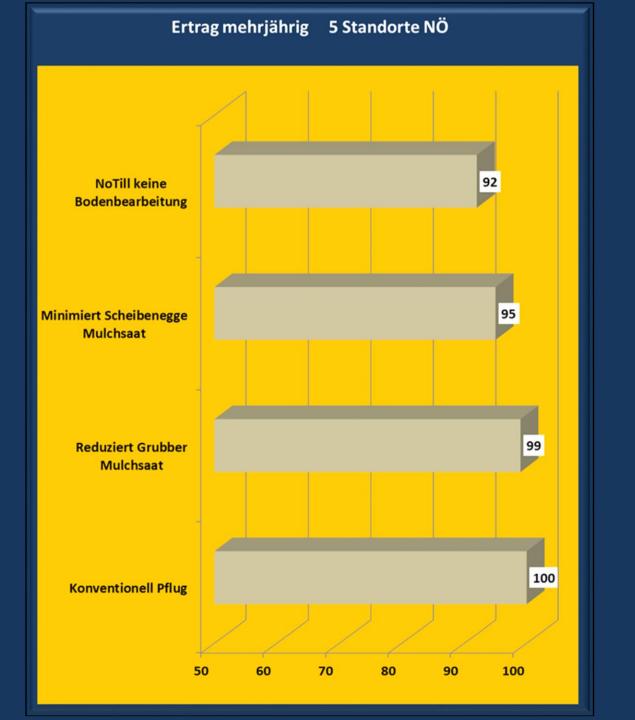
1068,0

rel,

100

200

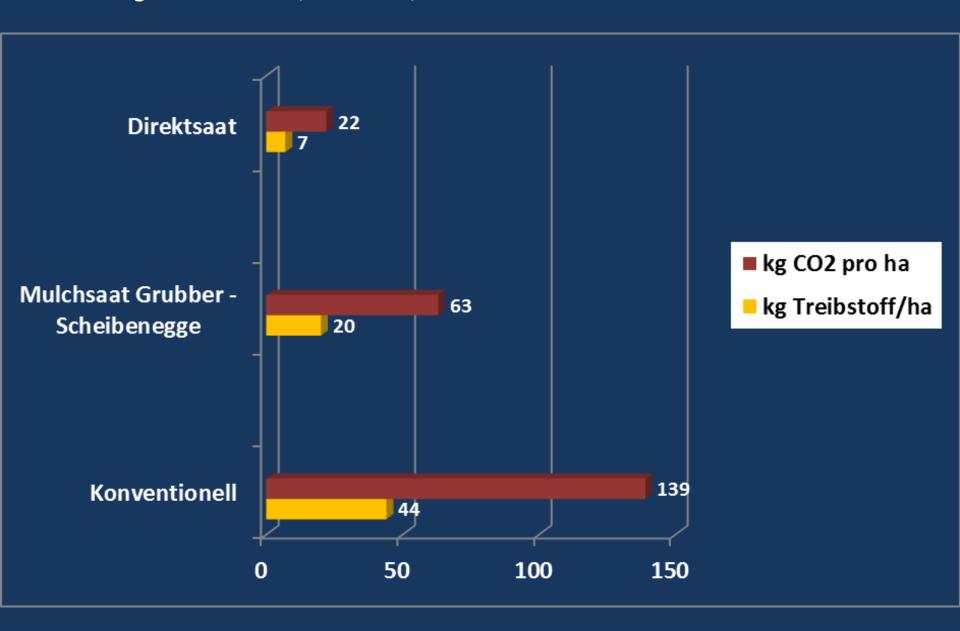
300


200

90


Fungizidversuch Sommerdurum Hollabrunn 2010

Fungizideinsatz: Pronto Plus 23.6.2010 in BBCH 60


	2010, Hollabri	unn, VF KM	2010, Hollabr	unn, VF KM	W° Mykotoxin	Durchschnitt			
	Floradur unbe	handelt	Floradur beha	ındelt	Reduzierung	Bodenb.			
	DON	rel	DON	rel	rel	rel.			
Konventionell	331	100,0	329	100,0	0,6	100			
Minimiert	1186	358,3	631	191,8	46,8	275			
Minimal	1017	307,3	714	217,0	29,8	262			
NoTill	1071	323,6	915	278,1	14,6	301			
Ø					22,9				

Erlöse mehrjährig 5 Standorte NÖ

Treibstoffverbrauch und CO₂ Freisetzung bei verschiedenen Bodenbearbeitungssystemen 3 – Messungen: Sandboden, Lößboden, Tonboden

Zusammenfassung

- •Mulch und Direktsaatmethoden sind ausgereift und funktionieren in der Praxis.
- •Bei intelligenter Ausnutzung von ÖPUL können optimal Förderungen lukriert werden, die gemeinsam mit den Einsparungen etwaige Ertragseinbußen mehr als kompensieren.
- •Bei den ökonomischen Betrachtungen dürfen Nährstoff Pestizid und Bodenverlust nicht unterschätzt werden.
- •Getreide Maisfruchtfolgen erfordern ein seichtes Einarbeiten der Ernterückstände zur Rotteförderung \rightarrow phytosanitäre Zwänge.
- •Nach der Ernte muss der Kulturpflanzenaufwuchs GRÜNE BRÜCKE für Schädlinge und Krankheiten.... Fusariosen, Gelbverzwergungsvirus, Blattläuse, Kohlerdflöhe..... rasch eliminiert werden.

- •Rascher Gründeckenanbau im Sommer so früh als möglich und unmittelbar nach der Ernte
- •Nichtabfrostende Gründecken unterdrücken Unkräuter, erfordern aber ein Totalherbizid im Frühjahr
- •Mykotoxinbildung durch Fusariosen ist durch seichte Bodenbearbeitung in bestimmten Fruchtfolgen zu vermeiden.
- •Eine Verringerung der Produktionskosten (Kosten, Arbeitszeit) ist möglich.
- •Ein Patentrezept für eine Bodenbearbeitung kann nicht erstellt werden, weil die zu setzenden Maßnahmen von der Fruchtfolge und der Bodenart abhängen.

Danke für Ihre Aufmerksamkeit

Versuchergebnisse: www.lako.at/versuche www.lako.at/landimpulse/agro-innovation/