

Seite

1

LFS Obersiebenbrunn 2018: Wirksamkeit und Verträglichkeit von Herbiziden in Spinat

Zusammenfassende publizierte Fassung der Versuche:

Versuchsdurchführende/r, -auswertende/r

Autor(en) des Berichtes:

Prüfrichtlinie:

HSpinat03-OS-18-02 (tlw. 01)

DI Elisabeth Zwatz-Walter, Werner Müllner

DI Elisabeth Zwatz-Walter

PP1/089(3) und andere Standardrichtlinien der EPPO

Spritzfolgen im Spinat mit Betosip SC, Tramat 500, Centium CS und Destor als Prüfmittel

Foto 1: Blick auf den Versuch – 2. Anbau am 24.9.2018

Seite

2

Inhaltsverzeichnis

Inhalt

١.	Versu	uchsziel	3
2.	Mater	rial & Methoden	3
2	2.1. An	gaben zum Versuch	3
	2.1.1.	Versuchsstandort	3
	2.1.2.	Angaben zur Versuchsfläche und zur Bodenbearbeitung	1
	2.1.3.	Sorte	2
	2.1.4.	Angaben zu den Vorfrüchten	2
	2.1.5.	Künstliche Infektion / Unkrauteinsaat	2
	2.1.6.	Versuchsanlage Fe	hler! Textmarke nicht definiert.
	2.1.7.	Versuchsglieder	3
	2.1.8.	Versuchsanlage	5
2	2.2. An	gaben zur Applikation	5
	2.2.1.	Anwendungs- und Boniturzeitpunkte	5
	2.2.2.	Ausbringung der Pflanzenschutzmittel	5
	2.2.3.	Angaben zur Applikationsgenauigkeit	6
2	2.3. Me	eteorologische Aufzeichnungen	6
3.	Ergeb	bnisse	7
;	3.1. Aus	ıswertung der Phytotoxizität	7
;	3.2. Nel	ebenwirkungen auf Nicht-Ziel-Organismen Fe	hler! Textmarke nicht definiert.
ļ.	Disku	ussion / InterpretationFe	hler! Textmarke nicht definiert.
).	Zusar	mmenfassung	11
	Fotos	s Fe	hler! Textmarke nicht definiert

Seite

3

1. Versuchsziel

Überprüfung der Wirkung und Pflanzenverträglichkeit von Herbiziden in Spinat (*Spinacia oleracea*) unter besonderer Beobachtung des Produktes "Destor".

2. Material & Methoden

2.1. Angaben zum Versuch

2.1.1. Versuchsstandort

Staat: Österreich

Bundesland: Niederösterreich

Region/Bezirk: Obersiebenbrunn, Bezirk Gänserndorf

Standortsbeschreibung:

Die Versuchsfläche liegt direkt an der L6 zwischen 2282 Glinzendorf und 2285 Leopoldsdorf vor dem Bahnübergang rechts aus Glinzendorf kommend. Der Anbau von Spinat ist in der gesamten Region üblich und auch am Betrieb selbst seit mehreren Jahren Teil der Fruchtfolge. Die Kulturbedingungen waren in Bezug auf Boden, Bodenbearbeitung und Düngung für den Versuch einheitlich. Die Kulturführung entsprach der guten landwirtschaftlichen Praxis.

Folgendes muss vorweg einschränkend für die Gültigkeit der Versuchsergebnisse erwähnt werden:

Aufgrund der extremen Hitze im August 2018 war der Feldaufgang der ersten Variante des Versuchs (HSpinat03-OS-18-01) sehr eingeschränkt. Lediglich entlang der Bewässerungsrohre etablierte sich der Spinat gut, auf den übrigen Flächen war nur sporadisch eine gute Bodendeckung erreichbar (Keimhemmung durch Hitze). Die Gesamtfläche wurde vom Landwirt eliminiert, was angesichts der Aussagefähigkeit des Versuches auch legitim war. Der Versuch wurde neu angelegt auf einer anderen Fläche des Feldstückes, jedoch muss die Nachwirkung des Ende Juli applizierten Venzar (Reg. Nr. 1323 mit 2 kg/ha) noch vermutet werden.

Seite

1

Standort: Markus Riemer, Glinzendorf 4, 2282 Glinzendorf,

Betriebsnummer 1480359, Feldstück (AMA) 4

Koordinaten: 16°25´ westlich, 48°24´ nördlich

Seehöhe: ca. 150 m Geländeform: eben Klima: pannonisch

Mittlerer Jahresniederschlag: 516 mm Mittlere Jahrestemperatur: 10,3 ° C

sonstige Anmerkungen: keine

2.1.2. Angaben zur Versuchsfläche und zur Bodenbearbeitung

Bodenart: Lehm

Bodentyp: Tschernosem aus kalkhaltigen Feinsedimenten

Humusgehalt: mittelhumos

pH – Wert: basisch

Bodenbearbeitung:		Vor der Erstanbau: Kurzscheibenegge, dann Grubber im Anschluss Pflug und Kombination Zum Zweitanbau: Kurscheibenegge und Kombination
Düngung:	24.7.2018	110 kg/ha Alzon 46 (46:0:0)
	26.9.2018	110 kg/ha Alzon 46 (46:0:0)
Anbau:	27.7.2018	Sorte Java (Umbruch Ende August)
	30.8.2018	Sorte Gorilla, 2,14 kg/ha
Kulturpflege und Pflanzenschutz:	28.7.2018	Herbizid "Venzar" mit 2 kg/ha außerhalb der Versuchsfläche (Versuch 1)
	31.8.2018	Herbizid "Venzar" mit 1,5 kg/ha außerhalb der Versuchsfläche (Versuch 2)
Beregnung	8.9.2018	4 mm (1 Stunde)
	9.9.2018	4 mm (1 Stunde)
	16.9.2018	6 mm (1,5 Stunden)
	20.9.2018	6 mm (1,5 Stunden)
	26.9.2018	12 mm (3 Stunden)
	4.10.2018	12 mm (3 Stunden)
	16.10.2018	12 mm (3 Stunden)

Seite

2

2.1.3. Sorte

Die Sorte Gorilla ist eine Hybride der Saatgutfirma Rijk-Zwaan. Sie wird beschrieben als mittelgrüne Industriesorte, die sowohl für den Herbst- als auch den Frühjahrsanbau geeignet ist und eine langes Erntefenster aufweist. In der Region wird diese Sorte häufig angebaut.

2.1.4. Angaben zu den Vorfrüchten

Ernte 2018: Grünerbse

Ernte 2017: Winterweizen, danach Begrünung

Ernte 2016: Kartoffel Ernte 2015: Zwiebel

Ernte 2014: Winterweizen, danach Begrünung

2.1.5. Künstliche Infektion / Unkrauteinsaat

x nein □ ja

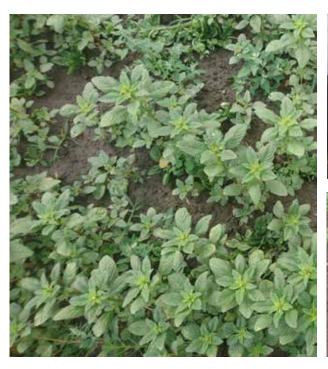


Foto 2-4: Immenses Auftreten von Amarant – nur sporadisches Auflaufen des Spinats! Saatbeet Bereitung vor neuerlicher Aussaat. Noch steht der alte Versuch, er wird aber vor der Neuaussaat eliminiert. Kaum Spinat auf dem Feld (26.8.2018)

Seite

3

2.1.6. Versuchsglieder – geplante Applikation

		Behandlung	Form	Form	Form	Aufw	and	Entwicklung	Appl
Var.	Туре	Name	Conc	Einheit	Туре	Dosis	Unit	ВВСН	Code
1	HERB	Kontrolle							
2	HERB	Goltix Gold	700	g/l	SC	1,8	l/ha	VA/00-05	Α
		-Metamitron	700			1260	g Al		
	HERB	Tramat 500	500	g/l	SC	0,8	I/ha	VA/00-05	Α
		-Ethofumesat	500			400	g Al		
	HERB	Betosip SC	163	g/l	SC	1	I/ha	12-14	С
		-Phenmedipham	163			163	g Al		
	ADJ	11-E Öl			SL	0,5	I/ha	12-14	С
3	HERB	Goltix Gold	700	g/l	SC	1,8	I/ha	VA/00-05	Α
		-Metamitron	700			1260	g Al		
	HERB	Centium CS	360	g/l	CS	0,1	I/ha	VA/00-05	Α
		-Clomazone	360			36	g Al		
	HERB	Betosip SC	163	g/l	SC	1	I/ha	12-14	С
		-Phenmedipham	163			163	g Al		
	ADJ	11-E Öl			SL	0,5	I/ha	12-14	С
4	HERB	Goltix Gold	700	g/l	SC	1,8	I/ha	VA/00-05	Α
		-Metamitron	700			1260	g AI		
	HERB	Betosip SC	163	g/l	SC	0,5	I/ha	10-12	В
		-Phenmedipham	163			81,5	g AI		
	ADJ	11-E Öl			SL	0,5	I/ha	10-12	В
	HERB	Betosip SC	163	g/l	SC	1	I/ha	12-14	С
		-Phenmedipham	163			163	g AI		
_	ADJ	11-E Öl			SL	0,5	I/ha	12-14	С
5	HERB	Goltix Gold	700	g/l	SC	1,8	I/ha	VA/00-05	Α
		-Metamitron	700			1260	g Al		_
	HERB	Destor	160	g/l	SE	0,5	I/ha	10-12	В
	101	-Desmedipham	160			80	g Al	10.10	
	ADJ	11 E Öl	100	%	SG	0,5	I/ha	10-12	В
	HERB	Destor	160	g/l	SE	1	I/ha	12-14	С
	ADI	-Desmedipham	160			160	g Al	12-14	С
	ADJ	11-E Öl			SL	0,5	I/ha		
6	HERB	Goltix Gold -Metamitron	700	g/l	SC	1,8 1260	l/ha g Al	VA/00-05	Α
	HERB	Betosip SC			00	0,25	I/ha	10-12	В
	TIERD	-Phenmedipham	163	g/l	SC	40,8	g Al	10-12	В
	HERB	Destor		- "	C.F.	0,25	I/ha	10-12	В
	TILKD	-Desmedipham	160	g/l	SE	40	g Al	10-12	
	ADJ	11-E Öl	100		SL	0,5	I/ha	10-12	В
	HERB	Betosip SC	163	g/l	SC	0,5	I/ha	12-14	С
	TILITO	-Phenmedipham	163	y/1	30	81,5	g Al		
	HERB	Destor	160	g/l	SE	0,5	I/ha	12-14	С
	· ILIND	-Desmedipham	160	9/1	JE .	80	g Al		
	ADJ	11-E Öl			SL	0,5	I/ha	12-14	С
	, 103				JL	0,0	i, i iu	12 17	J

Seite

4

2.1.7. Versuchsglieder – Applikation zu Versuch HSpinat03-OS-18-02

		Behandlung	Form	Form	Form	Aufw	and	Entwicklung	Appl
Var.	Туре	Name	Conc	Einheit	Туре	Dosis	Unit	ВВСН	Code
1	HERB	Kontrolle							
2	HERB	Tramat 500	500	g/l	SC	0,8	l/ha	VA/00-05	А
		-Ethofumesat	500			400	g Al		
	HERB	Betosip SC	163	g/l	SC	1	l/ha	12-14	С
		-Phenmedipham	163			163	g Al		
	ADJ	11-E Öl			SL	0,5	I/ha	12-14	С
3	HERB	Centium CS	360	g/l	cs	0,1	I/ha	VA/00-05	Α
		-Clomazone	360			36	g Al		
	HERB	Betosip SC	163	g/l	SC	1	I/ha	12-14	С
		-Phenmedipham	163			163	g Al		
	ADJ	11-E Öl			SL	0,5	l/ha	12-14	С
4	HERB	Betosip SC	163	g/l	SC	0,5	I/ha	10-12	В
		-Phenmedipham	163			81,5	g Al		
	ADJ	11-E Öl			SL	0,5	I/ha	10-12	В
	HERB	Betosip SC	163	g/l	sc	1	I/ha	12-14	С
		-Phenmedipham	163			163	g Al		
	ADJ	11-E Öl			SL	0,5	I/ha	12-14	С
5	HERB	Destor	160	g/l	SE	0,5	I/ha	10-12	В
		-Desmedipham	160			80	g Al		
	ADJ	11 E Öl	100	%	SG	0,5	I/ha	10-12	В
	HERB	Destor	160	g/l	SE	1	I/ha	12-14	С
		-Desmedipham	160			160	g Al		
	ADJ	11-E Öl			SL	0,5	I/ha	12-14	С
6	HERB	Betosip SC	163	g/l	SC	0,25	I/ha	10-12	В
		-Phenmedipham	163			40,8	g Al		
	HERB	Destor	160	g/l	SE	0,25	I/ha	10-12	В
		-Desmedipham	160			40	g Al		
	ADJ	11-E Öl			SL	0,5	I/ha	10-12	В
	HERB	Betosip SC	163	g/l	SC	0,5	I/ha	12-14	С
		-Phenmedipham	163			81,5	g Al		
	HERB	Destor	160	g/l	SE	0,5	I/ha	12-14	С
		-Desmedipham	160			80	g AI		
	ADJ	11-E Öl			SL	0,5	I/ha	12-14	С

Begründung für das Abweichen vom Versuchsplan: Wie bereits unter 2.1.1. dargestellt wurde, musste der Versuch 2 Mal angelegt werden. Sofort nach dem zweiten Anbau regnete es rund 100 mm, was nicht zu erwarten war. Das Feld war ab Beginn der Arbeitswoche nicht zu betreten, die Wärme und Nässe führte zu einer extrem schnellen Keimung, sodass bereits am ersten Tag, an dem das Feld begehbar war, das war der 5. September, 6 Tage nach dem Anbau, die Keimblätter bereits entwickelt waren.

An eine Applikation von Goltix Gold war nicht mehr zu denken, da man aus Erfahrung weiß, dass es hier zu großen Schäden kommt. Goltix Gold wurde zur Dokumentation außerhalb der Versuchsanlage kleinflächig appliziert.

Seite

5

2.1.8. Versuchsanlage

Anlage: randomisierte Blockanlage

Anzahl der Wiederholungen: 4

Parzellengröße: 3 * 10 m

Weitere Informationen:

Der Versuch wurde in Anbaurichtung angelegt

Amarant Auftreten

Spärlicher Bewuchs

3 3					
WH4 2	6	5	4	1	3
WH ³ 1	4	6	3	5	2
WH2 2	6	3	4	5	1 /
WH1 4	3	5_	1	2	6

2.2. Angaben zur Applikation

2.2.1. Anwendungs- und Boniturzeitpunkte

Applikatio n	Datum Applikatio n	Stadium Kultur	Bonitur	Datum Bonitur	Stadium Kultur	Anmerkung
			3 5.9.2018			Kontrolle der Befahrbarkeit
Α	6.9.2018	05-09				
			1.	11.9.	10-12	Bonitur der Entwicklung, Pflanzenschädigung, Kulturdeckungsgrad. Keine Unkräuter vorhanden
В	13.9.2018					
			2.	17.9.	12-14	w.o., Wirkung AMARE
С	20.9.2018					
			3.	24.9.	14-16	W.O.
			4.	11.10.	41	Wirkung AMARE, Pflanzenschädigung, Kulturdeckungsgrad
			5.	25.10.	45	W.O.

2.2.2. Ausbringung der Pflanzenschutzmittel

Gerät: "Kubota" HST T1600 Diesel – System Baumann

Seite

6

Spritzbalkenbreite: 3 m Anzahl Düsen pro Spritzbalkenbreite: 6

Düsen: Lechler IDK N 120-03

Betriebsdruck: 3 bar Wasseraufwandmenge: 300 I/ha

2.2.3. Angaben zur Applikationsgenauigkeit

Die Applikationsgenauigkeit wurde durch Ausfahren der Parzellenspritze am Ende der 4. Wiederholung erhoben. Die Abweichungen lagen in jedem Fall innerhalb der Toleranz (+ / - 10%).

2.3. Meteorologische Aufzeichnungen

Die- beigelegten Wetterdaten der Versuchssaison stammen von der nächstgelegenen Wetterstation, die von der landwirtschaftlichen Fachschule Obersiebenbrunn betreut wird. Die unten angeführten Wetterdaten wurden direkt am Feld erhoben.

Zu den Regenmengen am Versuchsort ist anzumerken, dass diese mit den beregneten Mengen zu kombinieren sind. Zudem traten Anfang Juli starke Unwetter auf, die den Versuchsstandort, nicht aber die LFS Obersiebenbrunn betrafen.

Datum	Beginn der Versuchsspritzung	Ende der Versuchsspritzung	ိ Lufttemperatur	္တံ Bodentemperatur	% Kultur- deckungsgrad	Wind und Windrichtung	g Blattnässe	% Bewölkung	Bodenbeschaffenheit	
6.9.2018	8:00	8:30	24	19	2	2 N/W	trocken 0		Feuchter Boden, feines Saatbeet, keine Mulchauflage	
13.9.2018	8:00	8:40	20	19	10	3 N	leicht feucht	10	Feuchter Boden, feines Saatbeet, keine Mulchauflage	
20.9.2018	9:00	9:45	28	21	15	15 A trocken 0 F		0	Feuchter Boden, feines Saatbeet, keine Mulchauflage	

Seite

7

3. Ergebnisse

3.1. Auswertung der Phytotoxizität

Variante	Sep-11-2018	Sep-17-2018	Sep-24-2018	Oct-11-2018	Oct-25-2018	
WH1 WH2	Geschätzte E	rtragsminderung allgem	einer Art in %	Geschätzte Ertrags gestauchten	sminderung wegen n Wuchs in %	
WH3 WH4	PHYGEN	PHYGEN	PHYGEN	PHYSTU	PHYSTU	
1	0	0	0	0	0	
1	0	0	0	0	0	
1	0	0	0	0	0	
1	0	0	0	0	0	
2	5	5	10	5	0	
2	5	0	10	5	0	
2	5	0	5	10	3	
2	8	0	10	5	0	
3	0	10	10	5	0	
3	5	15	10	8	0	
3	5	5	15	5	0	
3	8	10	10	5	0	
4	0	0	5	0	0	
4	0	5	5	5	0	
4	0	0	0	5	0	
4	0	0	5	5	0	
5	0	10	5	10	3	
5	0	5	10	10	3	
5	0	5	10	10	3	
5	0	10	5	1	0	
6	0	5	5	8	0	
6	0	0	0	5	0	
6	0	5	5	10	0	
6	0	0	0	10	0	
Berecl	nnete Mittelwerte	e zur Pflanzenvert	räglichkeit in % e	rwarteter Ertrags	minderung	
1	0	0	0	1	0	
2	6	1	9	6	1	
3	4	10	11	6	0	
4	0	1	4	4	0	
5	0	8	8	8	2	
6	0	3	3	8	0	

Seite

8

3.2. Entwicklung des Kulturdeckungsgrades

Variante	Sep-11-2018	Sep-17-2018	Sep-24-%2018	Oct-11-2018	Oct-25-2018	
WH1 WH2		Kulturdecki	ungsgrad in den einzelne	en Parzellen		
WH3 WH4	CANCRO	CANCRO	CANCRO	CANCRO	CANCRO	
1	10	25	80	95	100	
1	10	25	75	95	97	
1	5	15	35	65	80	
1	8	20	50	80	90	
2	10	25	50	90	97	
2	8	15	50	75	95	
2	5	10	30	60	90	
2	5	10	20	50	75	
3	8	15	50	80	95	
3	8	25	35	85	90	
3	10 5	25	50	80	90	
4	10	10 25	25 75	40 90	90	
4	10	20	75	95	97	
4	8	15	30	65	90	
4	8	15	50	80	80	
5	10	25	75	90	95	
5	10	25	50	80	95	
5	10	20	35	75	95	
5	5	15	20	50	75	
6	10	15	75	90	95	
6	10	25	50	90	97	
6	5	15	25	50	85	
6	5	15	25	70	75	
	Berechr	nete Mittelwerte	zum Kulturdeckur	ngsgrad in %		
1	8	21	60	84	92	
2	7	15	38	69	89	
3	8	19	40	71	91	
4	9	19	58	83	91	
5	9	21	45	74	90	
6 8		18	44	75	88	

Seite

9

3.3. Entwicklung des Pflanzenbestandes

Variante	Sep-11-2018	Sep-17-2018	Sep-24-2018	Oct-11-2018	Oct-25-2018	
WH1 WH2			Entwicklung in BBCH			
WH3 WH4	GROSTA	GROSTA	GROSTA			
1	12	14	16			
1	11	13	16			
1	10	13	16			
1	12	13	16			
2	10	13	14			
2	10	14	14			
2	10	12	14			
2	09	13	14			
3	12	14	14			
3	11	14	14			
3	12	13	16			
3	10	12	16			
4	12	14	16			
4	12	14	16			
4	11	13	14			
4	11	13	16			
5	12	14	14			
5	11	13	14			
5	12	13	14			
5	11	12	14			
6	11	12	14			
6	12	14	14			
6	11	12	14			
6	11	13	14			
	i e e e e e e e e e e e e e e e e e e e	telwerte der Pfla		in BBCH		
1	11	13	16			
2	10	13	14			
3	11	13	15			
4	12	14	16			
5	12	13	14			
6	11	13	14			

Seite

10

3.4. Wirkung gegen Amarant (Amaranthus retroflexus) wie am Feld erhoben

	Sep-11-2018	Sep-17-2018	Sep-24-2018	Oct-11-2018	Oct-25-2018	
Variante wh1	Wirkung in Proz	ent zur Kontrolle, in Var	iante 1 Darstellung des l	Unkrautdeckungsgrades	in der Kontrolle	
WH2 WH3 WH4		BBCH 14-16	BBCH 18	BBCH 50	BBCH 70	
1		0	5	10	1	
1		0	10	10	3	
1		5	10	10	3	
1		0	0	0	0	
2		100	100	100	98	
2		100	95	100	98	
2		100	100	100	98	
2		100	100	65	85	
3		85	65	85	98	
3		85	65	90	100	
3		100	100	100	98	
3		100	100	100	100	
4		33	33	65	98	
4		100	100	100	98	
4		33	33	33	65	
4		100	90	100	100	
5		100	33	90	98	
5		100	100	100	98	
5		100	100	100	98	
5		33	65	95	75	
6		100	100	100	98	
6		33	33	90	75	
6		65	65	85	75	
6		33	33	75	85	
	Mitt	lere Unkrautdeck	ungsgrade und W	irkungen		
1		1	6	8	2	
2		100	99	91	94	
3		93	83	94	99	
4		66	64	74	90	
5		83	74	96	92	
6		58	58	88	83	

Seite

11

3.5. Hinweise auf die Verträglichkeit von Goltix Gold im Keimblattstadium des Spinats

Da aufgrund der fortgeschrittenen Entwicklung Goltix Gold in der geplanten Aufwandmenge von 1,8 I/ha im Vorauflauf nicht mehr angewendet werden konnte, wurde das Produkt zu BBCH 10 im Mantel des Versuchs appliziert. Die Fotodokumentation zeigt eindeutig, dass diese Anwendung nicht gut verträglich ist. Es waren Applikation fast ausschließlich abgestorbene Blätter zu sehen, rund die Hälfte der Pflanzen war bei der Bonitur am 17.9. vorhanden und zur Bonitur am 24.9. waren die Restpflanzen in BBCH 12 (im Vergleich: Kontrolle im Versuch BBCH 16), der Kulturdeckungsgrad lag bei 15 % (Kontrolle: 60%)¹

Foto 5-6: Kontrolle und im Keimblattstadium mit 1,8 l/ha Goltix Gold behandelter Spinat (11.9.2018)

4. Diskussion und Interpretation

Der vorliegende Versuch könnte aufzeigen, wie die Nachwirkung einer Goltix Gold – Anwendung, die von sich aus vielleicht besonders gut verträglich ist, die kulturpflanzenschädigende Wirkung anderer Herbizide reduziert.

Das Versuchsprogramm wurde bereits 2017 umgesetzt. Zum damaligen Zeitpunkt mit Goltix Gold im Vorauflauf, was 2018 nicht möglich war. Die Pflanzenschäden 2017 waren immens und ließen Ertragsreduktionen von 5 - 25 % zur Ernte hin erwarten, besonders stark dort,

-

¹ Siehe dazu Foto 1 auf der Titelseite (rechts neben den Parzellen im Mantel). Aufnahme vom 24.9.2018

Seite

12

wo Goltix Gold in Verbindung mit den Versuchsprodukten Centium CS und Destor appliziert wurde.

2018 wurde Goltix Gold nicht eingesetzt, generell war die pflanzenschädigende Wirkung deutlich geringer.

Da aber die Wirkungsbreite und Wirkungssicherheit sich durch den Einsatz von Goltix Gold deutlich erhöht, sollte getestet werden, ob der Einfluss dieser Vorauflaufapplikation auf Folgeglieder in der Spritzung tatsächlich gegeben ist oder nur auf Zufall beruht, zumal die Umwelten dieser beiden Versuchsjahre 2017/2018 nicht zu vergleichen waren. Das bezieht sich sowohl auf den Boden, die Witterung und die Sorte.

Hinsichtlich der Wirkung gegen Unkräuter ist dieser Versuch wenig aussagekräftig: Es trat nur Amarant auf, dieser sporadisch und streifenweise. 2017 war die beste Amarantwirkung durch die Spritzfolge Goltix Gold + Tramat 500, Betosip SC + Öl zu erreichen, auch ohne Goltix Gold war diese Variante 2018 gut wirksam. Ähnliches zeigte sich in beiden Jahren in Variante 3 (+/- Goltix Gold + Centium CS, gefolgt von Betosip SC + 11E-Öl). Auffällig sind auch die deutlichen Unterschiede in der Wirkung innerhalb derselben Variante in den verschiedenen Wiederholungen. Ein Zusammenhang mit dem Kulturdeckungsgrad dürfte gegeben sein.

5. Zusammenfassung

Der vorliegende Versuch HSpinat03-OS-18-02 war als Wiederholung des Versuchsprogramms aus 2017 konzipiert, als solcher im August 2018 angelegt und, leider verändert, im September 2018 erneut wiederholt.

Die Wiederholung fand statt, weil bedingt durch Keimhemmung auf Grund von Hitze, die Gleichmäßigkeit des Versuches nicht gegeben war, die Veränderung des Programms war zurückzuführen auf eine extreme Wettersituation mit tagelanger Unbefahrbarkeit der Versuchsfläche, wodurch es zu einem verspäteten Applikationstermin kam. Es wurde entschieden, das im Vorauflauf einzusetzende Produkt Goltix Gold nicht mehr anzuwenden, um nicht den gesamten Versuch zu gefährden.

Das Auftreten von Amarant, dem eigentlichen Zielorganismus im Versuch, war wohl auf Grund des späten Anbaus als gering einzustufen. AMARE war nicht in allen Parzellen anzutreffen, obwohl beim Erstanbau des Versuches dichte "Amarantbestände" vorgefunden werden konnten. Neben dem späten Auftreten könnte auch die Anwendung von Venzar, das etwa 1 Monat vor der Neuanlage appliziert wurde, eine Ursache sein.

Die Sorte Gorilla wurde nach einer gediegenen Bodenbearbeitung am 28.8. angebaut und standortüblich gleichmäßig geführt. Es ist davon auszugehen, dass für die Versuchsfläche die Vorbedingungen gleich waren.

Das Auftreten von Schnecken verminderte im zweiten Anlauf die Aussagekraft dieses Versuches. Eine Molluskizidanwendung wurde nicht durchgeführt.

Die Applikationen der Versuchsprodukte fanden jeweils mit derselben Ausstattung statt. Es wurde immer mit 300 I/ha Wasser, bei 3 bar mit Düsen der Dimension IDKN 120-03 appliziert. Abweichungen von der Applikationsgenauigkeit sind auszuschließen. Der Boden

Seite

13

war durchgehend feucht gehalten, unmittelbar vor und nach den Applikationen fand keine Beregnung statt. Generell wurde am frühen Vormittag gespritzt, alle Applikationen fanden bei strahlungsstarkem Wetter statt bei nahezu Windstille. Die Termine waren: 6.9., 13.9. und 20.9., mit Ausnahme des ersten Termins waren die Applikationen dem Versuchsplan entsprechend.

Die **Pflanzenverträglichkeit** erwies sich im vorliegenden Versuch als gering eingeschränkt. Es traten gesamt nur wenige Schäden auf, diese reduzierten sich auf anfängliche, leichte mosaikartige Vergilbungen und schlussendlich waren leichte Einkürzungen zu beobachten. Kurz nach den Anwendungen gab es in jedem Fall einen Peak in der Unverträglichkeit, schlussendlich waren die Reduktionen auf kalkulierte 0 – 2 % aber vernachlässigbar. So lag der Mittelwert der Spritzfolge von 0,8 l/ha Tramat im Keimblattstadium und 1 l/ha Betosip SC + 0,5 l/ha 11E – Öl bei 1% Pflanzenschädigung, der Mittelwert der Spritzfolge 0,5 l/ha Destor + 0,5 l/ha 11E-Öl, jeweils im frühen wie im späten Nachauflauf zeigte eine schädigende Wirkung von 2%. Die übrigen Varianten waren zum Abschluss der Beobachtungen hin symptomfrei.

Generell war das Unkrautauftreten beim Anbau Ende August sehr unterschiedlich, außer **Amarant** war kein Unkraut vorhanden und auch dieser trat in Streifen auf. Manche Parzellen hatten kein Unkraut, andere hohe Besatzdichten. Ein direkter Schluss auf die Unkrautwirkung kann nicht sicher erfolgen, da teilweise auch in den Kontrollen wenig Amarant aufgetreten war.

Gleichmäßig gute Wirksamkeiten konnten aber in den Varianten 2 (Spritzfolge von 0,8 I/ha Tramat im Keimblattstadium und 1 I/ha Betosip SC + 0,5 I/ha 11E – Öl), 3 (0,1 I Centium CS im Keimblattstadium, 1I Betosip SC + 0,5 I/ha 11 E – Öl im späten Nachauflauf) und 5

Seite

14

(Spritzfolge 0,5 l/ha Destor + 0,5 l/ha 11E-Öl, jeweils im frühen wie im späten Nachauflauf) beobachtet werden.

Niederschläge Obersiebenbrunn 2018

	Jän.	Febr.	März	April	Mai	Juni	Juli	Aug.	Sept.	Okt.	Nov.	Dez.
1.		4,6		14,8				1,2	41,6			
2.					3,6				18,0		1,2	
3.	4,0								13,6			
4.												
5.	3,2											
6.			3,8			33,0	9,6					
7.		9,4										
8.		3,2	0,8		9,2							
9.	0,6	0,2			0,2	2,4						
10.	16,6				2,2		2,4	2,6				
11.						1,2	0,2	0,6				
12.			1,2			12,2						
13.	1,6	0,8		1,6								
14.	0,2	0,2					0,2	0,4	1,4			
15.					16,8							
16.	0,6	1,6	16,4		2,0							
17.		0,2	0,2		1,6							
18.	0,8	2,8										
19.	1,8										1,6	
20.	3,2	2,6									3,8	
21.	1,6	0,2				3,6	34,8					
22.							13,0		5,8		0,4	
23.	0,8			0,8	1,6		6,0		1,6		0,2	
24.	0,2			0,6				1,4	2,2	10,0	0,2	
25 .					35,6			2,6		0,2	3,2	
26.				6,6		7,1		7,4			20,6	
27 .						22,6	0,4			1,0	1,0	
28.						1,2				1,4		
29.			1,2									
30.	0,8		0,6					0,4		0,6		
31.			9,6									
	36,0	25,8	33,8	24,4	72,8	83,3	66,6	16,6	84,2	13,2	32,2	

Seite

-

Temperaturmittel in 2 m Höhe, gemessen mit der Station der Fa. ADCON Obersiebenbrunn 2018

TAG	Januar	Februar	März	April	Mai	Juni	Juli	August	September	Oktober	November	Dezember
1	2,9	2,8	-8,9	8,3	17,2	21,8	14,6	24,9	17,2	10,5	14,5	
2	3,6	2,3	-6,0	8,4	19,9	21,7	16,2	25,0	17,3	10,4	14,5	
3	2,5	1,0	-3,7	11,8	19,7	21,7	18,8	26,3	18,5	12,7	13,0	
4	6,4	0,9	-3,0	13,2	18,9	21,5	keine verwertbaren Daten	26,2	19,0	12,0	11,9	
5	4,7	-1,8	-1,0	11,3	17,4	21,6	keine verwertbaren Daten	25,6	20,4	13,7	11,3	
6	3,6	-1,0	0,4	8,1	16,7	20,0	21,3	24,3	18,1	16,2	12,0	
7	6,3	-0,6	3,0	7,6	17,1	20,3	20,7	24,7	18,6	17,3	11,6	
8	5,2	0,2	5,6	12,5	15,4	22,9	19,3	27,5	20,1	14,8	10,4	
9	6,2	-0,4	4,6	17,4	16,2	21,2	22,0	27,5	17,7	13,5	10,2	
10	3,6	-0,9	6,8	14,7	18,0	22,7	20,1	24,1	18,7	16,6	9,0	
11	2,8	0,4	9,1	14,6	18,0	24,4	17,5	20,5	20,7	16,9	7,4	
12	3,5	2,1	11,0	17,2	18,4	22,3	19,2	22,4	21,4	16,1	7,1	
13	0,9	0,2	9,1	16,6	19,1	19,4	20,9	24,9	21,1	15,5	8,9	
14	-0,2	0,1	6,6	13,4	17,3	16,5	21,1	22,4	18,5	15,6	7,2	
15	-1,5	0,0	5,1	16,9	11,7	18,3	22,1	22,3	18,4	13,5	3,2	
16	-0,7	0,2	7,3	16,7	14,4	20,4	21,7	21,0	17,6	14,8	2,0	
17	2,3	-0,6	0,0	15,7	13,9	21,6	22,4	21,8	19,6	14,6	0,3	
18	2,8	0,6	-3,2	14,4	16,6	21,9	21,6	23,4	21,2	14,1	0,3	
19	3,1	-1,9	-3,8	15,8	16,0	21,6	23,6	24,6	19,6	11,9	1,1	
20	0,2	-1,3	-1,6	17,3	16,6	23,1	21,8	26,0	19,5	11,7	2,9	
21	0,4	-1,2	-1,1	17,1	17,0	25,2	21,7	25,7	20,6	9,1	4,7	
22	-1,5	-0,7	-0,4	18,0	17,9	15,5	20,3	25,0	15,5	8,9	3,9	
23	0,5	-1,7	2,5	18,3	20,7	15,1	21,4	27,2	15,1	11,7	5,9	
24	2,1	-4,1	4,4	18,1	19,8	16,1	23,4	23,5	12,0	9,9	5,8	
25	2,1	-8,5	2,3	18,7	16,6	15,8	23,2	18,1	8,7	12,4	5,3	
26	1,2	-9,6	3,4	12,7	19,3	16,3	22,4	15,0	8,0	12,7	5,3	
27	2,0	9,8	4,3	12,5	20,8	16,2	24,0	16,0	12,0	8,4	0,5	
28	5,4	-10,1	3,6	17,8	22,1	18,1	24,7	19,7	15,8	10,6	-0,5	
29	10,3		8,8	21,6	22,5	22,2	26,0	20,9	11,8	15,9	-2,9	
30	6,3		7,8	20,9	21,0	18,2	25,4	21,2	9,3	16,5	-2,3	
31	1,4		10,9		22,8		26,2	19,1		11,1		